P510/2 PHYSICS Paper 2 July/Aug. 2018 2½ hours

ACEITEKA JOINT MOCK EXAMINATIONS 2018 UGANDA ADVANCED CERTIFICATE OF EDUCATION PHYSICS

Paper 2

(Principal Subject)

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

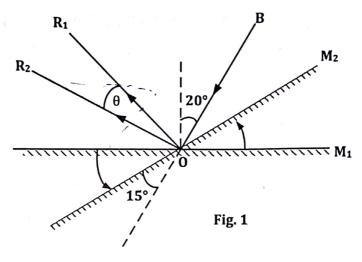
Answer only **five** questions, taking at least **one** question from each of the sections **A**, **B**, **C** and **D**, but **not** more than **one** question should be chosen from **either** section **A** or section **B**.

Any additional question(s) answered will **not** be marked.

Mathematical tables and squared paper will be provided.

Non-programmable Silent Scientific Calculators may be used.

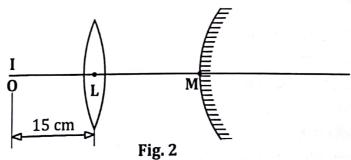
Assume where necessary:


Acceleration due to gravity,	g		=	9.81m s ^{- 2}
Speed of light in Vacuum,	С		=	$3.0 \times 10^8 \mathrm{m\ s^{-1}}$
Speed of sound in air,	\boldsymbol{v}		1=	$3.40 \times 10^2 \mathrm{m\ s^{-1}}$
Electronic charge,	e		=	1.60×10^{-19} C
Electronic mass,	m_{e}			$9.11 \times 10^{-31} \mathrm{kg}$
Permeability of free space,	μ_{o}		=	$4\pi \times 10^{-7} \text{H m}^{-1}$
Permittivity of free space,	$oldsymbol{arepsilon}_0$,		=	8.85×10^{-12} F m $^{-1}$
The Constant,	. <u> 1</u>	Jakan Hir	=	9.0 × 10 ⁹ F m ⁻¹
The Constant,	$4\pi\epsilon_0$			s setsus sin to l

SECTION A

r 1. (a) (i) State the laws of reflection of light.

(2 marks)


(ii) A ray of light from a fixed bulb B is incident on a plane mirror M_1 at 20°. The mirror is then rotated about point 0 anticlockwise to position M_2 as shown in figure 1. Taking R_1 and R_2 as the respective reflected rays. Determine the size of angle θ between R_1 and R_2 . (3 marks)

(b) (i) Define the term centre of curvature of a convex mirror.

(1 mark)

(ii) A convex lens L and a convex mirror M are arranged coaxially a distance of 6.0 cm apart. A real point object O placed in front of a convex lens of focal length 10.0 cm coincides with its own image I by no parallax at a distance of 15.0 cm from L.

Determine the focal length of the convex mirror, and draw a ray diagram to illustrate the action. (5 marks)

- (c) Describe an experiment to determine the refracting angle of a triangular glass prism using an optical spectrometer. (6 marks)
- (d) (i) What is meant by *limiting angle* of a triangular glass prism? (1 mark)

- (ii) Calculate the limiting angle of a prism made of glass of refractive index 1.51. (2 marks)
- 2. (a) (i) Define absolute refractive index of a material. (1 mark)
 - (ii) Monochromatic light is incident from air into a glass slab of refractive index 1.50 at 48.6°. Given that the thickness of the slab is 9.0 cm. Determine the time taken by the light to move across the slab. (speed of light in air = $3.0 \times 10^8 ms^{-1}$). (4 marks)

(b) (i) Describe the structure and action of a compound microscope in normal adjustment. (5 marks)

- (ii) A finite object of height 0.2 cm is placed 3.0 cm in front of the objective lens of focal length 2.5 cm. The eyepiece of the microscope having a focal length of 5.0 cm produces a magnified virtual image at the near point of the eye. Determine the size of the final image formed. (4 marks)
- (c) Explain why a simple hand lens is said to be free chromatic aberration when held very close to the observer's eye for observing objects.

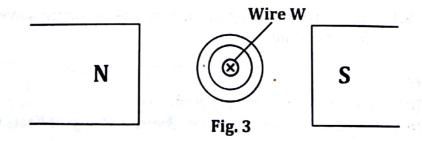
 (3 marks)
- (d) Explain three advantages of reflecting telescopes over refracting telescopes. (3 marks)

SECTION B

- *3. (a) Distinguish between longitudinal waves and transverse waves. (3 marks)
 - (b) A progressive wave whose displacement in the x direction with time is represented by the equation $y_1 = a \sin 2\pi \left(ft + \frac{x}{\lambda}\right)$ after bouncing off a plane stationary reflecting surface produces another wave of displacement y_2 .
 - (i) State the direction of travel of wave of displacement y_1 .

(ii) Write down equation of y_2 . (1 mark)

- (iii) Derive the equation of the resulting standing wave and state its amplitude. (3 marks)
- (c) (i) What are beats? (1 mark) (3 marks)
 - (iii) Describe how you can use the knowledge of beats to determine the frequency of unknown source. (4 marks)


(d) A fine wire of length 0.200 m is held between two fixed points and is subjected to a tension of 100 N. It's plucked from the middle to set it into vibration. At its 3rd harmonic, it resonates with a tuning force of frequency 256 Hz.

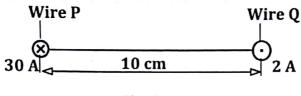
Determine the;

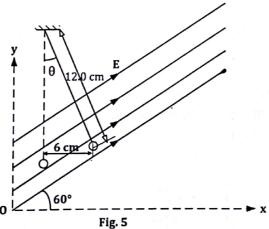
- (i) Wavelength of the wave profile produced. (2 marks)
- (ii) Mass per unit length of the wire used. (2 marks)
- 4. (a) (i) What is Doppler effect? (1 mark)
 - (ii) Using well defined symbols, derive an expressive for the apparent frequency of the sound of a car engine heard by an observer moving towards an approaching car travelling on the Same straight road. (4 marks)
 - (b) (i) Distinguish between unpolarized light and polarized light. (2 marks)
 - (ii) Describe how polarized light can be used to determine the concentration of sugar solution. (5 marks)
 - (c) (i) State Huygens's principle. (1 mark)
 - (ii) Use Huygens's principle to verify one of the laws of reflection of light. (3 marks)
 - (d) (i) What is interference of light waves? (1 mark)
 - (ii) State the conditions necessary for the observation of interference fringes in Young's double slit experiment. (3marks)

SECTION C

- **5.** (a) Define the following terms;
 - (i) Magnetic field line (1 mark)
 - (ii) Magnetic variance (1 mark)
 - (iii) Angle of dip. (1 mark)
 - (b) Figure 3 shows a straight wire W carrying a current I normal to the plane between two pole pieces of a strong magnet.

- (i) Complete the diagram to show what happens. (2 marks)(ii) Explain what will happen to the wire. (3 marks)
- (c) Figure 4 shows two parallel wires P and Q of infinite length carrying currents of 30 A and 2 A respectively and are separated by a distance of 10.0 cm apart.




Fig. 4

- (i) Determine the resultant magnetic field midway between the wires. (3 marks)
- (ii) At what distance from wire Q is the resultant magnetic flux density zero? (3 marks)
- (d) Describe an experiment to measure the horizontal component of the earth's magnetic field using a tangent galvanometer. (6 marks)
- **6.** (a) (i) What is electromagnetic induction? (1 mark)
 - (ii) State the laws of electromagnetic induction. (2 marks)
 - (b) A window frame of a house standing in the East West directions is made up of 200 turns of fine copper wire, joined at the end to make a loop. The dimensions of the window are 1.2 m by 0.8 m. The window is carefully opened about its hinges through an angle of 150° in 1.5 seconds. If the resultant earth's magnetic field at the location is 8.0×10^{-4} T and the angle of dip is 60°, determine the;
 - (i) Horizontal component of the Earth's magnetic field. (2 marks)
 - (ii) E.m.f. induced in the coil at the end of the process. (4 marks)
 - (c) (i) What are eddy currents? (1 mark)
 - (ii) State two applications of eddy currents and two disadvantages of eddy currents. (4 marks)
 - (d) Describe the structure and mode of operation of an a.c. generator. (6 marks)

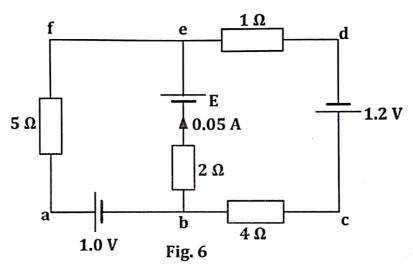
- (1 mark) Define the term capacitive reactance. (i) (a) , 7.
 - A capacitor of capacitance C farads is connected across an a.c (ii) source, $V = V_0 \sin 2\pi f t$. Derive an expression for its reactance. (3 marks)
 - Apure inductor of 0.56 μH is used as part of the tuning circuit in a (b) radio receiver. The clearest signal is attained at a frequency of 90.9 MHz
 - Find the value of the most appropriate capacitance desired for (i) (3 marks) the circuit.
 - Determine the ${f rms}$ value of the current that flows through the (ii) inductor when connected across a source of peak voltage 0.27 V. (3 marks)
 - With the aid of one simple circuit diagram, explain the use of a single (c) (5 marks) diode and a capacitor in the rectification process.
 - Describe the structure and mode of operation of a hot wire ammeter. (d) (5 marks)

SECTION D

- (1 mark) (i) What is meant by work function of a material? 8. (a)
 - Describe how a conducting sphere can be charged negatively at (ii) (4 marks) zero potential.
 - Figure 5 shows a small sphere of mass 5.10 g initially hanging (b) vertically from an insulating thread 12.0 cm long. A uniform electric field of magnitude $1.44 \times 10^6 NC^{-1}$ applied at 60° to the horizontal displaces the sphere by 6.0cm horizontally.

Determine

- (3 marks) The tension in the thread. (i) (3 marks)
- The magnitude of charge on the sphere. (ii)

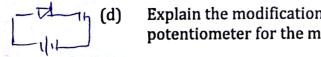

(c) (i) What are equipotential surfaces?

(3 marks)

- (ii) Sketch electric field patterns due to a positive point charge placed near an earthed metal plate; and show equipotential surfaces of the system. (3 marks)
- (d) Explain why the capacitance of a charged parallel plate capacitor increases when dielectric is inserted to fill the space between the plates. (3 marks)
- 9. (a) (i) State Kirchhoff's laws.

(2 marks)

(ii) The circuit in figure 6 shows a network of d.c sources and resistors.



If a current of 0.05 A flows through 2 Ω resistor from **b** to **e**, determine the value of E. (4 marks)

- (b) (i) Define the term *electrical resistivity* of a material. (1 mark)
 - (ii) Describe an experiment to measure electrical resistivity of a material in form of a wire using a voltmeter and an ammeter.

(6 marks)

- (c) (i) Explain the principle of operation of a slide wire potentiometer. (3 marks)
 - (ii) On top of being accurate, state two other advantages of a slide wire potentiometer over a moving coil voltmeter. (2 marks)

Explain the modifications necessary to use an ordinary slide wire potentiometer for the measurement of thermo electric e.m.f (2 marks)

- **10.** (a) (i) Define an ohm. (1 mark)
 - (ii) Derive an expression for the effective resistance of two resistors of resistances R_1 and R_2 arranged in parallel. (4 marks)
 - (b) Draw a labelled diagram of a Wheatstone bridge and use it to derive the balance condition. (4 marks)
 - (c) A nickel wire and a 10 Ω standard resistor were connected in the gaps of a metre bridge. When the nickel wire was at 0°C a balance point was found 40.0 cm from the end of the bridge wire adjacent to the nickel wire. When it was at 100°C, the balance point occurred at the 50.0 cm mark. Calculate the:
 - (i) temperature of the nickel wire on the resistance scale when the balance point was at 42.0cm from the corresponding end of the wire. (4 marks)
 - (ii) resistivity of nickel at this temperature, if the length of the wire is 150 cm and cross sectional area is $25 \times 10^{-4} cm^2$. (3 marks)
 - (d) (i) What is an Ohmic conductor? (1 mark)
 - (ii) Sketch current voltage characteristic graph of filament lamp and explain the shape. (3 marks)

= END =

